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We present structure-activity relationship (SAR) maps, a new, intuitive method for visualizing SARs targeted
specifically at medicinal chemists. The method renders an R-group decomposition of a chemical series as
a rectangular matrix of cells, each representing a unique combination of R-groups and thus a unique compound.
Color-coding the cells by chemical property or biological activity allows patterns to be easily identified and
exploited. SAR maps allow the medicinal chemist to interactively analyze complicated datasets with multiple
R-group dimensions, rapidly correlate substituent structure and biological activity, assess additivity of
substituent effects, identify missing analogs and screening data, and create compelling graphical representations
for presentation and publication. We believe that this method fills a long-standing gap in the medicinal
chemist’s toolset for understanding and rationalizing SAR.

Introduction

Research programs involving the identification of structural
leads or optimization of their activities against biomolecular
targets inevitably require the medicinal chemist to rely on a
traditional paradigm for analysis and presentation of structure-
activity relationships (SARsa). This common paradigm may be
found by examining a random article in any recent issue of a
medicinal chemistry publication, which will likely contain at
least one SAR table consisting of a generic structure, ac-
companied by table columns associating chemical substituents
with biological and chemical properties. Such SAR tables are
the lingua franca of the field and are widely understood and
accepted. Nevertheless, the generation of these tables is often a
time-consuming process that involves manual dissection of
chemical structures into their component parts and correlation
of scaffolds and substituents with activity or potency at a
biological target. Usually, SAR tables rely on static textual and
numerical correlations at the expense of flexibility and clarity.

Interestingly, the chemoinformatics community has paid little
attention to this intuitive way of presenting structure-activity
information. Apart from the ubiquitous molecular spreadsheets
found in chemical information and modeling packages, most
SAR visualization techniques rely on various forms of clustering
as a means of organizing the compounds into related subgroups.1

With few exceptions, this partitioning is usually driven by
similarity measures that look at the properties of the entire
molecule and do not explicitly consider the presence of distinct
scaffolds or substituent groups, which form the basis of most
medicinal chemistry projects. A chemical scaffold is more than
a common subgraph shared by a family of molecules; it often
embodies a specific synthetic strategy that allows systematic
exploration of SAR space using a divide-and-conquer approach.
While clustering methods offer certain advantages, they are often
misguided by idiosyncratic patterns in molecular graphs and
produce groupings that look “unnatural” to a medicinal chemist.

This makes the key determinants of biological activity difficult
to pinpoint and even more difficult to exploit in the design of
improved analogs. Examples of such visualization techniques
include self-organizing maps (SOMs), treemaps, dendrograms,
radial clustergrams, nonlinear maps, heatmaps, and various
forms of conventional statistical plots, such as scatter plots, bar
charts, pie charts, and so on.

SOMs or Kohonen networks2 map a set of objects onto a
two-dimensional (2D) lattice in a way that preserves the
topology of the underlying data. Similar objects (which are repre
esented as points in a multidimensional vector space) map onto
the same or proximal cells, whereas dissimilar objects map onto
distant cells. In essence, SOMs partition the objects into a set
of clusters whose relative position on the lattice reflects their
degree of relatedness. Gasteiger has used SOMs in conjunction
with 2D and three-dimensional (3D) autocorrelation descriptors
to successfully separate dopamine from benzodiazepine receptor
agonists embedded in a diverse set of commercially available
compounds,3 to model the activity of steroids and polyhaloge-
nated aromatics against the corticosteroid binding globulin and
Ah receptor, respectively,4 and to visualize the diversity of
combinatorial libraries.5

Dendrograms have historically been the method of choice
for visualizing clusters derived by hierarchical algorithms. This
layout reveals both the proximity of data items in the clusters
as well as the number of levels in the cluster hierarchy. As in
other tree layout methods, the difficulty in displaying a
dendrogram increases exponentially with the number of nodes,
a problem that has been partially alleviated in other domains
through the use of hyperbolic geometry.6

Treemaps7 visualize large cluster hierarchies in a space-filling
manner. They recursively subdivide the screen space available
using horizontal and vertical rectangles at alternating levels of
the tree, each with a thickness proportional to the size of the
node that it represents. Treemaps have been used to visualize
hierarchical clusters of chemical libraries8 and SAR data sets,9

as well as other drug discovery data such as gene expression
profiles10 and gene ontologies.11

Radial clustergrams12 represent an alternative space-filling
technique that arranges the clusters into a series of layers, each
representing a different level of the tree. Starting with the root
of the tree at the center, child nodes project outward within the
arc subtended by their parents, with a sweep angle that is
proportional to the number of points they contain. Each segment
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is color-coded by a user-defined aggregate property of the
elements in that node, such as the average or maximum activity
of the compounds in a particular biological assay. Compared
to classical dendrograms and hyperbolic trees, radial cluster-
grams make much more efficient use of screen real estate;
compared to treemaps, they are more effective in conveying
hierarchical structure and displaying properties of nodes at all
levels of the tree.

Nonlinear maps13 have been used to visualize individual
molecules in a way that conveys both molecular similarity and
biological activity in a single plot. Nonlinear maps are con-
structed by embedding a set of molecules into a low-dimensional
space (typically 2D or 3D) in such a way that the distances of
the points on the map match as closely as possible the (dis)-
similarities of the corresponding molecules. Color-coding of the
points on the map allows one to display additional properties
of the compounds, such as binding affinity, selectivity, and so
on. While nonlinear mapping has historically been limited to
relatively small data sets because of the (minimally) quadratic
complexity of distance embedding algorithms, a newer,
linearly scaling technique known as stochastic proximity
embedding14-16 allows the approach to be applied to much larger
collections.

Heatmaps are typically applied to visualize data points with
multiple attributes measured on the same scale. A heatmap is a
rectangular array of cells, each representing a particular attribute
of a particular object. Objects are typically arranged vertically
along they-axis, while attributes are arranged horizontally along
the x-axis. Cells are colored according to the values of their
corresponding attributes, obtained though mapping onto a
gradient color scale. Heatmaps can be combined with dendro-

grams to group together closely related rows and columns and
reveal patterns in the data. Heatmaps have been widely used in
the analysis of microarray data17 and were recently adopted for
visualizing SARs.18

A particularly informative visualization of multifactorial
structure-activity data is a special form of a pie chart called
VlaaiVis.19 VlaaiVis is a radial plot representing the property
profile of a single compound. Each slice of the “pie” represents
a normalized response to a particular assay or property. The
circumference of the pie represents the target values of each
property, and the length of each slice indicates the deviation of
that property from its target value. The method is ideal for
visualizing not only how closely a compound meets a complex
property profile, but also in determining the number of tests
that have been performed on a particular molecule. A large
number of compounds may be visualized simultaneously, either
vertically on a scrollable spreadsheet or side-by-side on a
rectangular grid.

More closely related to the present work is a substructure
analysis and visualization technique known as SAR trees.20 An
SAR tree is a graph composed of core, subcore, or leaf nodes,
which represent distinct chemical substructures, and attachment
nodes, which indicate how these substructures are connected
to one another. The core node represents a substructure that is
common to all of the compounds in the collection and is
connected in a radial fashion to a set of attachment nodes, which
represent different variation sites (R-groups) around it. Each
attachment node is, in turn, connected to a set of subcore or
leaf nodes. A subcore node represents a chemical substructure
that is shared by multiple compounds at that particular attach-
ment site and contains further variations around it. Leaf nodes

Figure 1. (a) Sample table of core, R1, and R2 substituents from R-group analysis of 1-acyl-3,5-diamino-1,2,4-1H-triazoles; and (b) generic triazole
structure and core structure for SAR maps.
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represent terminal substructures that are distinct from any other
chemical fragments at a given variation site. Thus, individual

molecules are represented by a set of structural variation paths
emanating from the core and terminating in a leaf node, and
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the union of these paths represents the entire library. This type
of recursive definition of substructural patterns also forms the
basis of ClassPharmer,21 a technique that utilizes maximum
common substructures (MCSs) and a phylogenetic-like tree
algorithm to partition the compounds into a set of clusters, which
can then be correlated with biological activity.

Scaffold trees are an alternative way of visualizing substruc-
ture hierarchies in large, heterogeneous data sets.22,23Each node
in the tree represents a unique chemotype at some level of
abstraction (in ref 22, for example, these can be complete
molecules, cyclic systems, cyclic system skeletons, and reduced
cyclic system skeletons). The hierarchies are obtained through
iterative removal of side chains and rings from the parent
molecule, followed by canonicalization of the resulting struc-
tures. By mapping compounds onto the tree and examining the
relative occupancy of actives and inactives at each node, one
can assess the degree of enrichment at several levels of structural
resolution.

R-group analysis is at the root of many scaffold-based
methods and is supported by several software packages such
as Diva,24 Accord for Excel,25 and STN Express.26 Diva is
probably the first application to offer the capability to find and
label R-group substituents around a specified core. These
substituents are displayed in a molecular spreadsheet, with
additional columns providing associated activity values.

Here, we present SAR maps, a new visualization technique
that combines the power of R-group analysis with the visual
richness of heatmaps. SAR maps allow the medicinal chemist
to interactively analyze complicated datasets with multiple
R-group dimensions, rapidly correlate substituent structure and
biological activity, assess additivity of substituent effects,
identify missing analogs and screening data, and create

compelling graphical representations for presentation and
publication. SAR maps have been fully integrated into Third
Dimension Explorer (3DX), a state-of-the-art data analysis tool
developed as part of J&JPRD’s discovery informatics platform
known as ABCD.27 By bringing together pictorial representa-
tions of chemistry and graphical visualization of biological and
property data, the SAR map establishes a new paradigm for
SAR analysis that can greatly facilitate the drug discovery
process.

Methods

3DX and ABCD. SAR maps were implemented as a component
of 3DX, a .Net application designed to address a broad range of
data analysis and visualization needs in drug discovery. 3DX is
part of a broader initiative known as ABCD,27 which aims to
connect disparate pieces of chemical and pharmacological data into
a unifying whole and provide discovery scientists with tools that
allow them to make informed, data-driven decisions.

3DX is a table-oriented application, similar in concept to the
ubiquitous Microsoft Excel. A 3DX document contains a collection
of tables, each of which contains a collection of columns and rows.
Each column contains data of the same type, such as strings,
integers, floating point numbers, “fuzzy” or qualified numbers
(floating point numbers with range or uncertainty qualifiers),
number lists, dates, time intervals, chemical structures and sub-
structures, images, graphs, and many others. Much of 3DX’s
analytical power comes from its ability to handle very large data
sets through its embedded database technology, to associate
custom cell renderers with each data type in the spreadsheet,
and to visualize the entire data set using a variety of custom
viewers, such as 2D and 3D scatter plots, histograms, heatmaps,
correlation maps, and the SAR maps described herein. The
program offers a full gamut of navigation and selection options,

Figure 2. (a) CDK1 inhibition (pIC50) of triazoles, sorted by R2 AlogP, then CDK1 potency; (b) VEGFR2 inhibition (pIC50) of triazoles, sorted
by R2 AlogP, then CDK1 potency; and (c) Log of (VEGFR2 IC50)/(CDK1 IC50), sorted by R2 AlogP, then CDK1 potency.
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augmented through linked visualizations and interactive filtering
and querying.

3DX uses a plug-in architecture that allows new functionality
to be developed independently of the main application and delivered
to the user either automatically or on a per-need basis. Plug-ins
can be UI or non-UI driven and have full programmatic access to
the 3DX core and the data, allowing them to create and remove
tables, insert and remove columns, edit data, create and (re)arrange
viewers, and so on. Their functionality and implementation can be
extremely diverse, bringing a wealth of data retrieval, processing,
analysis, visualization, and reporting capabilities to the end users,
without requiring them to leave the application. An array of
powerful, chemically aware data mining tools were introduced in
this fashion, including exact structure, substructure, and similarity
searching, structure alignment, MCS detection, chemotype clas-
sification, R-group analysis (vide infra), physicochemical property
calculation, combinatorial library generation, diversity analysis, and
many others. The plug-in architecture is also used to provide
seamless integration with the ABCD warehouse through the ABCD
wizard, a graphical query builder that allows users to mine the

ABCD database without requiring knowledge of SQL or its
relational schema and to retrieve the results in a variety of tabular
formats.

R-Group Analysis. R-group analysis takes as input a list of
chemical structures bearing a common substructure (typically a ring
scaffold) and decomposes them into a list of substituents or
R-groups around that substructure, along with their attachment
points to it. The common core is specified either through manual
sketching or through an automated search for the MCS. Both the
MCS search and the R-group analysis algorithms are implemented
as a 3DX plug-in.

A comprehensive search for an MCS among a list of chemical
graphs is a complex procedure whose execution time grows
exponentially with the number of compounds considered. In
addition, identifying the MCS between a pair of molecules is by
itself a nontrivial task that requires an exponentially longer time
for larger molecules. Hence, manual sketching of the common core
is often the fastest option, especially if the chemist is analyzing a
known series. When the common core is unknown, an MCS search
provides a much better alternative to visual inspection. A naı¨ve

Figure 3. (a) Sample table of core, R1, and R2 substituents from R-group analysis ofN-[4-(piperazin-1-yl)cyclohexyl]- andN-[4-(piperidin-4-yl)-
cyclohexyl]-sulfonamides; and (b) generic piperazine/piperidine structure and core structures for SAR maps.
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MCS search algorithm would involve traversing the list of
molecules and iteratively computing the MCS of theith molecule

to the MCS of the previousi-1 molecules (i.e., computing the
recursive relation mcs(i) ) MCS(mcs(i-1), mol(i)), where mcs(1)
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≡ mol(1)). Because the MCS is order-dependent, in theory allN!
permutations of theN input molecules need to be considered (each
involving N-1 pairwise MCS comparisons). To achieve acceptable

performance and ensure a positive user experience, we use a fast,
approximate algorithm that identifies the correct MCS in most cases
but does not necessarily guarantee it (i.e., sometimes the resulting

Figure 4. R1a binding affinities (pKi) of (a) cis-piperazines; (b)trans-piperazines; (c)cis-piperidines; and (d) oftrans-piperidines.
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common substructure may not be the maximum). The algorithm
starts by sorting the molecules in descending order of bond count,
designating the largest molecule as the initial MCS, and iteratively
reducing the MCS by comparing it with the next molecule in the
list. Our experience suggests that thisO(N) algorithm performs well
in most cases and is extremely fast.

Once the common core is identified, it is converted to a
substructure pattern that is mapped onto all the molecules in the
list. Generally, a pattern can be mapped onto a molecule in a number
of ways, for example, a benzene ring can be mapped onto aniline
in six different ways, each placing the attachment point for the
amino group on a different atom in the benzene ring. Because the
goal of R-group analysis is to identify structural variations at the
same position on the common core, we need to minimize the
number of attachment points so that, using the example above, both
aniline and toluene would be considered as having an amino or a
methyl R-group, respectively, at the same position on the benzene
core. Hence, after all molecules have been mapped, our R-group
analysis algorithm identifies a mapping that minimizes the number
of attachment points on the core scaffold. In a second pass, the
preferred mapping of the common core is applied to each of the
molecules to identify the fragments connected to each attachment
point. The resulting R-groups are extracted into separate columns
labeled R1, R2, and so on, and their attachment points to the core
are replaced with dummy atoms labeled X. Similarly, the attachment
points on the core are replaced with dummy atoms labeled R1, R2,
and so on.

SAR Map. An SAR map renders an R-group decomposition as
a rectangular grid of colored cells. Each cell represents a single
compoundCi, defined as the combination of its constituent R-groups
{R1(i), R2(i), ..., Rn(i)}, whereRj(i) is the substituent at thejth
variation site in compoundi. The map has the appearance of a
heatmap, with the exception that the usual horizontal and vertical
text labels are replaced by the chemical structures of the substituents
at the two variation sites displayed on theX andY axes.

When the scaffold contains only two variation sites (n ) 2), all
compounds in the data set are visible on the map, withR1 andR2

placed along theX andY axis, respectively (or vice versa). When
n > 2, the remaining dimensions are displayed on the side using a
set of chemical sliders that allow the user to view all the substituents
available at each variation site but limit the selection to a single
member of each list. In this case, the SAR map displays the sub-
matrix of compounds formed by the Cartesian product{Rr1,j1)1,...,|Rr1|}
× {Rr2,j2)1,...,|Rr2|} × Rr3,j3 × ...× Rrn,jn, where all but two dimensions
are fixed to a single R-group (i.e., the maps display a hyperplane
in the n-dimensional combinatorial substituent space).

Two dropdown boxes allow the user to select which variation
sites to display along theX andY axes; the remaining R sites are
displayed in sliders arranged by their R numbers. The graphical
interface is completed with a color-scale and additional dropdown
box that allows the user to interactively select which property and
scale to use for color-coding the cells. The color scale handles both
numerical and categorical variables (using smooth gradients for
numerical variables and discrete colors for categorical ones).
Because it is extremely rare that an SAR data set will contain all
possible combinations of all the substituents, cells associated with
missing compounds are not drawn at all, whereas cells associated
with compounds that are present but whose property values are
null (e.g., those whose biological activity has not been measured)
are colored in gray. This provides a very effective way of assessing
the coverage of the combinatorial space and the degree of
completeness of the biological characterization.

Given the potentially large number of substituents that need to
be displayed, we based our implementation on Anti-Grain Geometry
(AGG),28 a high-quality, lightweight, extensible, and platform-
independent rendering engine written in standard ANSI C++. AGG
provides very fast anti-aliased graphics with sub-pixel accuracy,
allowing effective visualization of a large number of chemical
structures with minimal loss of resolution and clarity. The SAR
viewer itself is implemented as a .Net control and is built upon a

.Net version of the AGG library written in C++/CLI (available
with .Net 2.0).

Discussion

We illustrate the utility of SAR maps (and the ABCD data
integration, in general) using a recently completed program
directed toward the identification of inhibitors of cyclin-
dependent kinase-1 (CDK1), which are useful as anticancer
agents.29 Analysis began with a substructure search of the ABCD
data warehouse for compounds belonging to the chemical series
of interest (1-acyl-3,5-diamino-1,2,4-1H-triazoles) followed by
extraction of relevant biological results. The resulting table of
chemical structures and biological data was submitted to
R-group analysis to generate a table of R-substituents derived
from an algorithmically determined MCS or user-defined core
structure. Figure 1 shows the core and R1 and R2 substituents
for a representative sample of the 74 analogs described in the
table.

The results of the R-group analysis may be displayed using
chemistry-rich 2D matrices generated by the SAR map tool. In
Figure 2a, for example, structures for the R1 groups (the
substituents attached to N-1 of the 3,5-diamino-1,2,4-1H-triazole
core) are displayed horizontally across the top of the matrix,
and structures for the R2 groups (the substituents attached to
the 3-amino group of the 3,5-diamino-1,2,4-1H-triazole core)
are displayed vertically along the left side. The colored
rectangles represent individual compounds having particular R1

and R2 substituents, and the color represents biological activity
at a given target; in this case, it is the pIC50 against CDK1.
Potent inhibitors are shown in red (pIC50 > 9), weak inhibitors
in blue (pIC50 < 5.5), and inhibitors of intermediate potency
by a linear gradient from red to blue through white (indicated
by the scale on the right side of the matrix). In Figure 2a, the
R2 groups are sorted according to their calculated octanol/water
partition coefficients (AlogP), with substituents having higher
AlogP values at the top and those with lower AlogP values at
the bottom.

The clustering of red at the bottom of the matrix in Figure
2a clearly shows that R2 AlogP is loosely associated with CDK1
inhibition. In particular, highly potent CDK1 inhibitors (shown
by the red rectangles) contain N-substituted 4-sulfamoylphenyl
R2 groups, and the most potent inhibitors contain an unsubsti-
tuted 4-sulfamoylphenyl group (AlogP) 0.54). Analogs with
lipophilic R2 groups like 3-chlorophenyl (AlogP) 2.49) or 4-(4-
methylpiperazin-1-yl)phenyl (AlogP) 1.95) are among the least
potent CDK1 inhibitors in the dataset. Furthermore, exceptions
to the correlation hypothesis are simple to identify using the
SAR map. In this particular example, the break in color trend,
where R2 ) 4-methanesulfonylaminophenyl, is visually striking
and suggests that factors other than lipophilicity, such as
hydrogen bonding or steric interactions, are at play.

Once the R-group analysis is set up, the SAR map allows
the analyst to easily test the same hypothesis (R2 AlogP
correlates with activity) against other biological targets. For the
triazole CDK1 inhibitors, inhibition data for other kinase targets
are available and can be trivially retrieved from ABCD. It is
informative to examine activity at enzymes from different kinase
families to obtain a measure of the overall selectivity of these
molecules. One such enzyme is VEGFR2 kinase (also known
as KDR), a member of the receptor tyrosine kinase family,
evolutionarily distinct from the CDK family of serine-threonine
kinases. Figure 2b shows the SAR map of the CDK1 inhibitor
compound set color-coded by VEGFR2 kinase activity. Ar-
rangement of R1 and R2 groups in the matrix and color scaling
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(kinase potency in pIC50) are identical to those used in Figure
2a, allowing a direct side-by-side visual comparison of VEGFR2

inhibition with CDK1 inhibition. The evident lack of bright red
color indicates that the triazoles are less potent inhibitors of
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VEGFR2 kinase (maximum pIC50 ) 7.9) than CDK1 (maximum
pIC50 ) 9.2). Also, the VEGFR2 inhibition pattern is markedly

different from the CDK1 pattern. Instead of a cluster of potent
inhibition around R2 groups with low AlogP, VEGFR2 inhibi-

Figure 5. (a) Selectivity scores ofcis-piperazines; (b) selectivity scores oftrans-piperazines; (c) selectivity scores ofcis-piperidines; and (d)
selectivity scores oftrans-piperidines. Legend: score 3) R1d/R1a Ki ratio 0.33-3 andR1b/R1a Ki ratio >50; score 2) R1d/R1a Ki ratio 0.2-0.33 or
3-5 andR1b/R1a Ki ratio >50; score 1) R1d/R1a Ki ratio <0.2 or >5 or R1b/R1a Ki ratio <50.
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tion correlates with specific R1 substituents, namely, the
thiophen-2-carbonyl groups (pale red). Such a correlation implies
that the inhibitor binding site in VEGFR2 kinase might bind
the heterocyclic thiophene ring with higher affinity than the
benzene ring present in the less potent (blue) inhibitors. Note
that the analogs containing the 4-sulfamoylphenyl group (along
the bottom row of the SAR map), which are the most potent
inhibitors of CDK1 (Figure 2a), are not consistently potent
inhibitors of VEGFR2 kinase (Figure 2b).

To more clearly visualize CDK1 versus VEGFR2 selectivity,
the log of the ratio of VEGFR2 IC50 to CDK1 IC50 may be
used as the color-coding parameter (Figure 2c). Some aspects
of the color pattern in Figure 2c are similar to the pattern
observed for CDK1 potency (Figure 2a), clearly showing that
the most potent CDK1 inhibitors (R2 ) 4-sulfamoylphenyl) are
for the most part also the most selective. Another group of
selective analogs are those where R1 is 2,6-difluorophenyl or
2,6-difluoro-3-methylphenyl, as shown by the seventh and ninth
columns of the SAR map.

The SAR map is also a powerful tool for visualizing SARs
in datasets with more complex R-group patterns. As an example,
we analyzed a set of substitutedN-[4-(piperazin-1-yl)cyclo-
hexyl]- and N-[4-(piperidin-4-yl)cyclohexyl]-sulfonamide de-
rivatives that were discovered to be high affinity ligands for
subtypes of theR1-adrenergic receptor.30,31Analogs possessing
a desired selectivity profile, namely, high affinity for theR1a

and R1d subtypes and lower affinity for theR1b subtype, are
desirable as potential agents for the treatment of benign prostatic
hyperplasia and lower urinary tract symptoms. A dataset of 76
compounds was extracted from the ABCD database and was
submitted to R-group analysis, as described above, producing
another table of R-substituents derived from four core structures,
cis-piperazines,trans-piperazines,cis-piperidines, andtrans-
piperidines, representing the four distinct chemical subseries in
the dataset (Figure 3). SAR maps allow the data for all four
core structures and the various R1 and R2 substituents to be
displayed conveniently in chemistry-rich multidimensional
matrices. Figure 4a-d illustrates binding affinities of compounds
in each subseries, respectively, for theR1a-adrenergic receptor
subtype. The SAR map tool allows the user to interactively
switch between different core structures to see the relative
populations, diversity, and activity pattern of each subseries.
For example, it is apparent that different sets of R2 substituents
were incorporated in thecis/trans-piperazine cores compared
to the cis/trans-piperidine cores. Piperazine SAR is highly
concentrated in the first eight R2 substituent columns, while
piperidine SAR skips columns five through eight. Also, it is
evident that mono-, di-, and trifluoroethoxy R2 substituents are
much more broadly represented in the piperidines. SAR maps
can easily identify gaps like these so that holes in the SAR
matrix may be filled, if desired.

Examination of SAR maps for the piperazines (Figure 4a,b)
and the piperidines (Figure 4c,d) reveals that, for analogs that
share common R1 and R2 substituents (shown in the lower left
corners of the figures), binding affinities are comparable. On
the other hand, direct comparison ofcis- andtrans-isomer pairs
(alignment of Figure 4a with 4b and Figure 4c with 4d) shows
that in most cases thecis-isomers have higherR1a binding
affinities than the correspondingtrans-isomers. This difference
is readily apparent for the piperazine subseries, but is more
striking in the piperidine subseries.

Although highR1a binding affinity is a critical component of
the activity profile,R1-adrenergic receptor subtype selectivity
is equally important. The target selectivity profile for this

research program was approximately equal binding affinity for
R1a andR1d subtypes and high selectivity versus theR1b subtype.
To enable rapid classification of analogs, a scoring parameter
was computed for each compound according to the following
criteria. Compounds havingR1d/R1a Ki ratios between 0.33 and
3 andR1b/R1a Ki ratios>50 were assigned scores of 3 (highest
selectivity). Compounds havingR1d/R1a Ki ratios between 0.2
and 0.33 or between 3 and 5 (i.e., intermediateR1d/R1a

selectivity)and R1b/R1a Ki ratios>50 were assigned scores of
2. Compounds havingR1d/R1a Ki ratios<0.2 or>5 or R1b/R1a

Ki ratios <50 were assigned scores of 1 (i.e., either lowR1d/
R1a selectivity, low R1b/R1a selectivity, or both). When the
selectivity score is used as the activity parameter, SAR maps
may be used to rapidly identify compounds of high interest.
Figure 5a-d show the selectivity scores of each analog in the
four subseries in a clear color-coded pattern, where red, white,
and blue represent highly selective (score) 3), moderately
selective (score) 2), and “nonselective” (score) 1) com-
pounds, respectively. This analysis demonstrates that high
binding affinity does not necessarily correlate with high
selectivity. While many piperazines bind strongly to theR1a

subtype (pKi values>8, Figure 4a,b), only four analogs (two
cis-piperazines and twotrans-piperazines) meet the strictest
selectivity criteria (score) 3, Figure 5a,b). In contrast, 10
analogs in the piperidine subseries (ninecis-piperidines and one
trans-piperidine) meet the strictest selectivity criteria (score)
3, Figure 5c,d), and in most cases the high selectivity goes hand
in hand with highR1a affinity (Figure 4c,d). Therefore, in terms
of overall potential, thecis-piperidines appear to offer the best
combination of potency and selectivity.

Conclusion

By combining the power of R-group analysis with the visual
capacity of heatmaps, SAR maps deliver dense information
visualizations rich in chemical context. The method can be
combined with other visualization techniques such as the
activity-normalized VlaaiVis pie charts,19 to display additional
dimensions of chemical and biological data. SAR maps mirror
the way in which therapeutic agents are being discovered and
optimized and allow structure-activity patterns to be easily
identified and exploited in analog design. We believe that this
component, when properly implemented and integrated into an
interactive data analysis application with dynamically linked
displays, provides an effective solution to a significant unmet
need in SAR analysis and visualization.

We wish to thank the numerous users of ABCD and Third
Dimension Explorer for providing valuable feedback during the
development of this tool.
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